

ALL INDIA ONLINE TEST SERIES <u>IIT JAM CHEMISTRY 2020</u> <u>STARTING – Aug 2019</u>

<u>57 TESTS:31Unitwise Practice Test + 13 Minor Test + 5 Major Test + 3 Part Test</u> + 5 Full Length Tests

<u>Value Addition Material + Supplementary Material:Soft copy& Hard copy</u> (Expert Support:Telephonic Discussion/ Email Interaction)

Program Objective: This is a comprehensive and intensive 'interactive' program focussing on sincere IIT JAM Aspirants who will appear in IIT JAM 2020. Our experts provide steps by step guidance to aspirants for understanding the concepts chemistry and preparing them for scoring good marks.

Approach & Strategy: Our Simple, practical and focussed approach will help aspirants understand the demand of IIT JAM Exam effectively. Our strategy is to constantly innovate to keep the preparation process dynamic and give personalized attention to individual aspirants based on factor core competence, availability of time and resource and the requirement of IIT JAM Exam.

Our interactive Learning approach (Email/Telephonic Discussion: Expert with Aspirants) will continuously improve aspirant's performance and move their preparation in the right direction.

<u>Number of Mock Test:</u>57 TESTS: 31Unitwise + 13 Minor + 5 Major + 3 Part + 5 Full <u>Length</u>

Fee (Incl. all taxes): Rs 4500/-

<u>Nature</u>Flexible- Date of Mock Test: Reschedule on the demand of aspirants. (POSTPONE, BUT NOT PREPONE)

What you will get:

- Login ID Password for performance analysis of aspirants. (Innovative Assessment System including POST TEST ANALYSIS)
- 57 Mock Test Papers & detailed conceptual Answer Explanations.
- Analysis of Mock Test papers based on difficulty level & nature of questions.
- Comprehensive analysis of previous year questions papers.

INNOVATIVE ASSESSMENT SYSTEM:

Static & dynamic Potential of Mock test papers (Scoring Potential). Macro & Micro performance Analysis of aspirants, Section wise analysis, Difficulty Analysis, All India Rank, comparison with toppers, Geographical Analysis, Integrated Score Card, Analysis of Mock Test paper based on difficulty level & nature of question etc.

HOW IT WORKS: The tests are planned at Five different levels of preparation required for a student to succeed in IIT JAM.

<u>1. Unit level- Test 1 to 31</u>: Each test will be based entirely on the most unit sources of that particular section. Here we will test whether you have thoroughly prepared these unit sources or not and if you have understood all the basic concepts or not. These tests will be available on Chem Academy Portal right from your date of enrolment, you can give these test anytime as per your convenience. These papers are developed in order to boost your foundation and effective preparation of every particular unit mentioned in IIT JAM Syllabus. These are three hour tests each containing 60 questions based on IIT JAM Syllabus and Pattern.

2. Applied level (Minor, Major) – Test 32 to 44 & 45 to 49: In this level, we will test your subject knowledge at an applied level. Test would be more analytical in nature, application oriented with relevance to recent concepts. These tests would not be restricted to few particular sources and it would cover the entire primary, Secondary and other sources. These tests are of 3 hours, each containing as expected 60 questions pertaining to Chemistry subject.

3. Comprehensive level (PartandFull test) -Test 50 to 52 AND 53 TO 57: These are Full Length (FLT) covering all the levels of difficulty and all the types of questions similar to the IIT JAM paper. These tests will validate that your preparation is complete and you have achieved that extra edge to succeed in IIT JAM. Part test will again comprise of 100 questions each. In Part Tests number of topics (from each Physical, Inorganic and Organic Chemistry) are more compared to Major tests and eventually inFull tests you will have 60 questions from complete syllabus.

DISCLAIMER

- Chem academy material is for the individual only. In case a student is found involved in any violation of copyrights of Chem academy material, the admission to the test series will be cancelled.
- We have facility of fee payment in cash too.
- Fee once paid is non-refundable and non- transferable in all circumstances
- Chem academy reserves all rights related to admission.
- Chem academy reserves all rights to make any changes in test series schedule/ test writing days and timing etc., if need so arises.

UNITWISE SYLLABUS	CONTENT	& STANDARD	REFERENCES

Unit	Topics	CONTENT & STANDARD RE Syllabus covered	Primary	Secondary
No.	Topics	-	•	(Additional)
INO.		(The list is indicative to help	(Essential)	· /
		students; however, it is not	Reference	Reference
		exhaustive. A topic may have		
1		more subtopics)	11th 10th MORDER	
1	Basic Mathematical	Functions; maxima and minima	11 th ,12 th NCERT	RD Sharma
	Concepts	integrals; ordinary differential		
		equations, vectors and		
		matrices, determinants,		
		Elementary statistics and		
		probability theory		
		Fundamental particles; Bohr's		
		theory of hydrogen-like atom;		
2	Atomic and	wave – particle duality;	11 th NCERT,	Peter Atkins,
	Molecular	uncertainty principle;	class notes,	Engel & Reid,
	Structure	Schrodinger's wave equation;	Chem Academy	
		quantum numbers; shapes of	(DLP Kit)	
		orbitals; Hund's rule and Pauli's	, , ,	
		exclusion principle; electronic		
		configuration of simple		
		homonuclear diatomic molecules		
		Electronic effects (resonance,	$11^{\text{th}}, 12^{\text{th}}$	Paula Bruise,
	Basic organic	inductive, hyperconjugation,	NCERT,	Carey Sandberg,
3	chemistry/GOC	Aromaticity) and steric effects	Classnotes,	Jerry March
	5	and its applications (acid/base	Chem Academy	5
		property).	(DLP Kit)	
4	Theory of gases	Equation of state for ideal and	11 th NCERT,	K L Kapoor
		non-ideal (vander Waals) gases;	class notes,	Engel & Reid,
		Kinetic theory of gases;	Chem Academy	Charles
		Maxwell-Boltzmann distribution	JAM	Mortimer
		law; equipartition of energy	(DLP Kit)	
5	Stereochemistry	Optical isomerism in compounds		
		with and without any		Subratosen
		stereocenters (allenes,	Class notes,	Gupta, P S Kalsi,
		biphenyls); conformation of	Chem Academy	jonathanclayden,
		acyclic systems (substituted	(DLP Kit)	Ernest Eliel
		ethane/ <i>n</i> -propane/ <i>n</i> -butane) and		
		cyclic systems (mono- and di-		
		substituted cyclohexanes).		
6	Chemical bonding	Different types of bonding	11 th NCERT,	HueeyKieter,Shri
		theories VSEPR, VBT and MOT,	Class notes	ver Atkins,
		shapes of molecules,	Chem Academy	MiesslerTarr
		hybridization, dipole moment	(DLP Kit)	E. Housecraft
7	Colligative	Dilute solutions; lowering of	12 th NCERT	
	properties	vapour pressure, Raoult's and	Class notes	K.L Kapoor,
		Henry's Laws and their	Chem Academy	Puri-Sharma-
		applications.	(DLP Kit)	Pathania,R.CMu
		Excess thermodynamic		kherjii, Martin
		functions.		siberberg
		Thermodynamic derivation using		
		chemical potential to derive		
		relations between the four		
		colligative		

Unit No.	Topics	Syllabus covered (The list is indicative to help students; however, it is not exhaustive. A topic may have more subtopics) properties [(i) relative lowering of vapour pressure, (ii) elevation of boiling point, (iii) Depression	Primary (Essential) Reference	Secondary (Additional) Reference
8	Solid state	of freezing point, (iv) osmotic pressure] and amount of solute. Applications in calculating molar masses of normal, dissociated and associated solutes in solution. Crystals and crystal systems; X- rays; NaCl and KCl structures; close packing; atomic and ionic radii; radius ratio rules; lattice	12 th NCERT Class notes, Chem Academy (DLP Kit)	K L Kapoor, Hueey, Castellen, Charles
9	Reaction	energy; Born-Haber cycle; isomorphism; heat capacity of solids. Nucleophilic and electrophilic substitution	12 th NCERT Class notes,	Mortimer Jonathan clayden,
10	mechanism Chemical	(SN1,SN2, SNi, E1,E2,E1cb, anchimeric assistance) Reversible and irreversible processes; first law and its	Chem Academy JAM (DLP Kit) 11 th NCERT Class notes, Chem Academy	paulabruice, Carey Sandberg, George Zweifel K L kapoor, Peter Atkin, Castellen,
	thermodynamics	application to ideal and nonideal gases; thermochemistry; second law; entropy and free energy; criteria for spontaneity.	Chem Academy JAM (DLP Kit)	Charles Mortimer, Ira Lavine
11	Aromatic Electrophilic and Nucleophilic substitution Addition elimination reactions	Nitration, sulphonation, halogenati ons Di and tri electrophilic substitution in benzene rings and fused polycyclic rings systems	12 th NCERT Class notes, Chem Academy JAM (DLP Kit)	Jonathan clayden, Peter Sykes,Carey Sandberg, George Zweifel Jerry March
12	Periodic properties of elements	Periodic classification of elements and periodicity in properties; general methods of isolation and purification of elements	11 th NCERT class notes, Chem Academy JAM (DLP Kit)	Shriver Atkins, Cathrine E Housecraft, MiesslerTarr, Hueeykieter
13	Reaction Intermediates	Chemistry of reactive intermediates (carbocations, carbanions, free radicals, carbenes, nitrenes, benzynes etc)	class notes, Chem academy JAM (DLP Kit)	Peter Sykes, Jonathan clayden, Jerry March, George Zwiefel, Ernest Eliel

Unit No.	Topics	Syllabus covered (The list is indicative to help students; however, it is not exhaustive. A topic may have more subtopics)	Primary (Essential) Reference	Secondary (Additional) Reference
14	Main group elements	General concepts on group relationships and gradation in properties; structure of electron deficient compounds involving main group elements	11 th , 12 th NCERT, Classnotes, Chem academy JAM (DLP Kit)	Hueey, Shriver Atkins, GreenWood, Cotton & Wilkinson, Ajay Kumar
15	Chemical Equilibrium	Criteria of thermodynamic equilibrium, degree of advancement of reaction, chemical equilibria in ideal gases, concept of fugacity. Thermodynamic derivation of relation between Gibbs free energy of reaction and reaction quotient. Coupling of exoergic and endoergic reactions.Equilibrium constants and their quantitative dependence on temperature, pressure and concentration. Freeenergy of mixing and spontaneity; thermodynamic derivation of relations between the various equilibriumconstants <i>Kp</i> , <i>Kc</i> and <i>Kx</i> . Le Chatelier principle (quantitative treatment); equilibrium between ideal gases &a pure condensed phase.	11 th NCERT, Class notes, Chem academy JAM (DLP Kit)	Peter Atkins, K L Kapoor Ira Levine, Charles Mortimer, Castellen
16	Reagents	Oxidation and reduction reactions (Clemmensen, Wolff-Kishner, LiAlH4, NaBH4, MPV, PDC and PGC etc) in organic chemistry, organometallic reagents in organic synthesis (Grignard, organolithium and organocopper).	Class notes, Chem academy JAM (DLP Kit)	Jerry March, Paula bruice, Carey Sandberg, Carruthers Jonathan clayden, George Zweifel
17	D Block elements	Characteristics of 3d elements; oxide, hydroxide and salts of first row metals	12 th NCERT, Chem academy JAM (DLP Kit)	Ajay kumar, MiesslerTarr, GreenWood, Cotton & Wilkinson, shriver Atkins

Unit No.	Topics	Syllabus covered (The list is indicative to help students; however, it is not exhaustive. A topic may have more subtopics)	Primary (Essential) Reference	Secondary (Additional) Reference
18	Ionic equilibrium	Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect; dissociation constants of mono-, di- and tri- protic acids (exact treatment).Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions; derivation of Henderson equation and its applications; buffer capacity, buffer range, buffer actionand applications of buffers in analytical chemistry, biochemical processes in the human body. Solubility and solubility product of sparingly soluble salts – applications of solubility product of sparingly soluble salts – applications; selection of indicators & their limitations. Multistage equilibria in polyelectrolyte systems; hydrolysis and hydrolysis	11 th NCERT Class notes, Chem academy JAM (DLP Kit)	K.L Kapoor, Puri-Sharma- Pathania, Charles Mortimer,R.C Mukherji
19	Radioactivity	constants nuclear theories, nuclear reactions, applications of isotopes.	Class notes, Chem academy JAM (DLP Kit)	Asim K Das vol 1,Puri-Sharma pathania,
20	Phase equilibrium	Concept of phases, components and degrees of freedom, derivation of Gibbs Phase Rule for non-reactive & reactive systems; Clausius- Clapeyron equation and its applications to solid-liquid, liquid-vapour and solidvapour equilibria, phase diagram for one component systems, with applications.Phase diagrams for systems of solid-liquid equilibria	Class notes, Chem academy JAM (DLP Kit)	Castellen, Charles Mortimer, Peter Atkins, K L Kapoor

Unit No.	Topics	Syllabus covered (The list is indicative to help students; however, it is not exhaustive. A topic may have more subtopics)	Primary (Essential) Reference	Secondary (Additional) Reference
		involving eutectic, congruent and incongruent meltingpoints, solid solutions. Binary solutions: Gibbs-Duhem- Margules equation, its derivation and applications to fractional distillation of binary miscible liquids (ideal and nonideal), azeotropes, lever rule, partial miscibility of liquids, CST,miscible pairs, steam distillation.Nernst distribution law: its derivation and applications.		
21	Name reactions and rearrangements	Hofmann-Curtius-Lossen rearrangement, Wolff rearrangement, Simmons- Smith reaction, Reimer- Tiemann reaction, Michael reaction, Darzens reaction, Wittig reaction and McMurry reaction; Pinacol-pinacolone, Favorskii, benzilic acid rearrangement, dienone- phenol rearrangement, Baeyer-Villegerreaction etc.	12 th NCERT, Class notes, Chem academy JAM (DLP Kit)	George Zweifel, Ernest Eliel, Carey Sandberg,Paula bruice Jonathan clayden,ILFinar
22	Titrations	Acid-base, oxidation- reduction and complexometric titrations using EDTA; precipitation reactions	Physical chemistry (wiley) JEE book Classnotes	K L Kapoor, Puri-Sharma- pathania
23	Electrochemistry	Galvanic cells; EMF and free energy, concentration cells with and without transport; polarography; concentration cells with and without transport.	12 th NCERT Class notes, Chem Academy JAM (DLP Kit)	K L Kapoor, Engel & Reid, Castellen, Charles Mortimer, Ira Levine
24	Pericyclic Reactions	Diels-Alder, electrocyclic and sigmatropic reactions.	Class notes, Chem Academy JAM (DLP Kit)	Jonathan Clayden, paulabruice, C. Sandberg, Jerry March, George Zweifel
		Structure, isomerism, reaction	12 th NCERT,	HueeyKieter,

Unit No.	Topics	Syllabus covered (The list is indicative to help students; however, it is not exhaustive. A topic may have more subtopics)	Primary (Essential) Reference	Secondary (Additional) Reference
25	Coordination complexes	mechanism and electronic spectra; VB, MO and Crystal Field theoretical approaches for structure, color and magnetic properties of metal complexes	Class notes, Chem academy JAM (DLP Kit)	shriverandatkin s, MiesslerTarr, Catherine E.Housecraft, G.Lawrence.
26	Conductance	Conductance and its applications; transport number, Debey-Huckel- Onsagar theory of strong electrolytes.	12 th NCERT Chem academy JAM (DLP Kit)	Castellen, Charles Mortimer, K L Kapoor Puri-Sharma- Pathania
27	Aromatic and Hetrocyclic chemistry	Monocyclic, bicyclic and tricyclic aromatic hydrocarbons, and monocyclic compounds with one hetero atom: synthesis, reactivity and properties.	Class notes, Chem academy JAM (DLP Kit)	Jonathan clayden, S P Bhutani, John Joule and Keith Mills,Beena Negi and R.K Parashar
28	Bio inorganic	Essentials and trace elements of life; basic reactions in the biological systems and the role of metal ions, especially Fe ²⁺ , Fe ³⁺ , Cu ²⁺ and Zn ²⁺ ; structure and function of hemoglobin and myoglobin and carbonic anhydrase	Class notes, Chem academy JAM (DLP Kit)	Hueey ,Asim K Das, Stephen J. Lippard, J D Lee
29	Chemical kinetics	Reactions of various order; Arrhenius equation; collision theory; transition state theory; chain reactions - normal and branched; enzyme kinetics	12 th NCERT Class notes, Chem academy JAM (DLP Kit)	K L Kapoor, Castellen, Charles Mortimer, Peter Atkins, Ira Levine, Laidler, Engel & Reid
30	Qualitative Organic Analysis	Identification of functional groups by chemical tests; elementary UV, IR and ¹ H NMR spectroscopic techniques as tools for structural elucidation.	Class notes, Chem academy JAM (DLP Kit) Y R Sharma, JDS Yadev	Clayden, Pavia, Lampman, kriz, C.Banwell, Silversteen.

Unit No.	Topics	Syllabus covered (The list is indicative to help students; however, it is not exhaustive. A topic may have more subtopics)	Primary (Essential) Reference	Secondary (Additional) Reference
31	Instrumental Method of Analysis	instrumentations and simple applications of conductometry, potentiometry and UV-vis spectrophotometry; analysis of water, air and soil samples.	Chem academy Booklet and class notes	R S Khandpur, Skoog.
32	Adsorption	Gibbs adsorption equation; adsorption isotherm; types of adsorption; surface area of adsorbents; surface films on liquids	12 th NCERT Pradeep's class notes, Chem academy JAM (DLP Kit)	K L Kapoor, Puri Sharma Pathania, Castellen
33	Natual Products Chemistry	Chemistry of alkaloids, steroids, terpenes, carbohydrates, amino acids, peptides and nucleic acids	Class notes, Chem academy JAM (DLP Kit)	Jonathan Clayden, Paula bruice, S P Bhutani, Sujata V bhat, Yang Ye,SPBhutani
34	Analytical chemistry	Principles of qualitative and quantitative analysis	Class notes, Chem academy JAM (DLP Kit)	F.W. Fifield, Jessica Carol
35	Photochemistry	Photochemical processes, Quantum yield	Class notes, Chem academy JAM (DLP Kit)	K L Kapoor, Puri Sharma Pathania, Castellen, Laidler
36	Spectroscopy	Beer-Lambert law; fundamental concepts of rotational, vibrational, electronic and magnetic resonance spectroscopy	Class notes & Chem academy (DLP Kit)	Banwell, K L Kapoor, Levine, Peter Atkin, Charles Mortimer
37	Organometallic	Organometallic compounds having ligands with back bonding capabilities such as metal carbonyls, carbenes, nitrosyls and metallocenes; homogenous catalysis.	Class notes & Chem academy (DLP Kit)	Hueey, Atkins, Greenwood, Housecraft, J. Hartwig, Crabtree, Elias, Asim K Das

UNITWISE TOPICS TEST SCHEDULE

TEST	Syllabus	Topic covered
No.		(The list is indicative to help students; however, it is not
1	Desis Mathematical	exhaustive. A topic may have more subtopics)
1	Basic Mathematical Concepts	Functions; maxima and minima, integrals; ordinary differential equations; vectors and matrices, determinants, Elementary
	Concepts	statistics and probability theory
2	Atomic and	Fundamental particles; Bohr's theory of hydrogen-like atom; wave –
	Molecular	particle duality; uncertainty principle; Schrodinger's wave equation;
	Structure	quantum numbers; shapes of orbitals; Hund's rule and Pauli's exclusion principle; electronic configuration of simple homonuclear
		diatomic molecules
3	Basic organic	Electronic effects (resonance, inductive, hyperconjugation,
	chemistry/GOC	Aromaticity) and steric effects and its applications (acid/base
		property).
4	Theory of gases	Equation of state for ideal and non-ideal (vander Waals) gases;
		Kinetic theory of gases; Maxwell-Boltzmann distribution law; equipartition of energy
5	Stereochemistry	Optical isomerism in compounds with and without any stereocenters
	5	(allenes, biphenyls); conformation of acyclic systems (substituted
		ethane/n-propane/n-butane) and cyclic systems (mono- and di-
		substituted cyclohexanes).
6	Chemical bonding	Different types of bonding theories VSEPR,VBT and MOT, shapes
7	Solid state	of molecules, hybridization, dipole moment Crystals and crystal systems; X-rays; NaCl and KCl structures; close
,	Sond state	packing; atomic and ionic radii; radius ratio rules; lattice energy;
		Born-Haber cycle; isomorphism; heat capacity of solids.
8	Reaction	Nucleophilic and electrophilic substitution
	mechanism	(SN1,SN2, SNi, E1,E2,E1cb, anchimeric assistance)
9	Chemical	Reversible and irreversible processes; first law and its application to
	thermodynamics	ideal and nonideal gases; thermochemistry; second law; entropy and
	Arometic	free energy; criteria for spontaneity.
	Aromatic Electrophilic and	Nitration, sulphonation, halogenations
10	Nucleophilic	Di and tri electrophilic substitution in benzene rings and fused
	substitution	polycyclic rings systems
	Addition	
	elimination	
	reactions	
11	Periodic properties of elements	Periodic classification of elements and periodicity in properties;
11	of elements	general methods of isolation and purification of elements
12	Reaction	Chemistry of reactive intermediates (carbocations, carbanions,
	Intermediates	free radicals, carbenes, nitrenes, benzynes etc)
13	Main group	General concepts on group relationships and gradation in
	elements	properties; structure of electron deficient compounds involving
		main group elements
		Criteria of thermodynamic equilibrium, degree of advancement
		of reaction, chemical equilibria in ideal
		gases, concept of fugacity. Thermodynamic derivation of

TEST	Syllabus	Topic covered
No.		(The list is indicative to help students; however, it is not
		exhaustive. A topic may have more subtopics)
	Chambrel	relation between Gibbs free energy of reaction and
14	Chemical	reaction quotient. Coupling of exoergic and endoergic
14	Equilibrium	reactions.Equilibrium constants and their quantitative
		dependence on temperature, pressure and concentration.
		Freeenergy of mixing and spontaneity; thermodynamic
		derivation of relations between the various
		equilibrium constants <i>Kp</i> , <i>Kc</i> and <i>Kx</i> . Le Chatelier principle
		(quantitative treatment); equilibrium between ideal gases &a pure condensed phase.
		Oxidation and reduction reactions (Clemmensen, Wolff-
15	Reagents	Kishner, LiAlH4, NaBH4, MPV, PDC and PGC etc) in organic
10	Reagents	chemistry, organometallic reagents in organic synthesis
		(Grignard, organolithium and organocopper). Strong, moderate and weak electrolytes, degree of ionization,
		factors affecting degree of ionization, ionization constant and
		ionic product of water. Ionization of weak acids and bases, pH
		scale, common ion effect; dissociation constants of mono-, di-
		and tri- protic acids (exact treatment).Salt hydrolysis-
		calculation of hydrolysis constant, degree of hydrolysis and pH
16	Ionic equilibrium	for different salts. Buffer
		solutions; derivation of Henderson equation and its applications;
		buffer capacity, buffer range, buffer actionand applications of buffers
		in analytical chemistry, biochemical processes in the human body.
		Solubility and solubility product of sparingly soluble salts –
		applications of solubility product principle. Theory of acid –
		base indicators; selection of indicators & their limitations. Multistage
		equilibria in polyelectrolyte systems; hydrolysis and hydrolysis constants
	Radioactivity	nuclear theories, nuclear reactions, applications of isotopes.
17		
	T ''	
	Titrations	Acid-base, oxidation-reduction and complexometric titrations
		using EDTA; precipitation reactions
	Die inergenie	Essentials and trace elements of life, basic reactions in the
18	Bio inorganic	Essentials and trace elements of life; basic reactions in the biological systems and the role of metal ions, especially Ea^{2+}
10		biological systems and the role of metal ions, especially Fe^{2+} , Fe^{3+} , Cu^{2+} and Zn^{2+} ; structure and function of hemoglobin and
		•
		myoglobin and carbonic anhydrase
		Concept of phases, components and degrees of freedom, derivation of
		Gibbs Phase Rule for non-reactive &
		reactive systems; Clausius-Clapeyron equation and its applications to
		solid-liquid, liquid-vapour and solidvapour equilibria, phase diagram
	Phase equilibrium	for one component systems, with applications. Phase diagrams for
19		systems of solid-liquid equilibria involving eutectic, congruent and
		incongruent melting points, solid solutions.
		Binary solutions: Gibbs-Duhem-Margules equation, its derivation
		and applications to fractional distillation of

TEST No.	Syllabus	Topic covered (The list is indicative to help students; however, it is not exhaustive. A topic may have more subtopics)
		binary miscible liquids (ideal and nonideal), azeotropes, lever rule, partial miscibility of liquids, CST, miscible pairs, steam distillation. Nernst distribution law: its derivation and applications.
20	Name reactions and rearrangements	Hofmann-Curtius-Lossen rearrangement, Wolff rearrangement, Simmons-Smith reaction, Reimer-Tiemann reaction, Michael reaction, Darzens reaction, Wittig reaction and McMurry reaction; Pinacol-pinacolone, Favorskii, benzilic acid rearrangement, dienone-phenol rearrangement, Baeyer- Villegerreaction etc.
21	Electrochemistry	Galvanic cells; EMF and free energy, concentration cells with and without transport; polarography; concentration cells with and without transport.
	Conductance	Conductance and its applications; transport number, Debey- Huckel-Onsagar theory of strong electrolytes.
22	Pericyclic Reactions	Diels-Alder, electrocyclic and sigmatropic reactions.
23	Coordination complexes	Structure, isomerism, reaction mechanism and electronic spectra; VB, MO and Crystal Field theoretical approaches for structure, color and magnetic properties of metal complexes
	D Block elements	Characteristics of 3d elements; oxide, hydroxide and salts of first row metals
24	Aromatic and Hetrocyclic chemistry	Monocyclic, bicyclic and tricyclic aromatic hydrocarbons, and monocyclic compounds with one hetero atom: synthesis, reactivity and properties.

TEST No.	Syllabus	Topic covered (The list is indicative to help students; however, it is not exhaustive. A topic may have more subtopics)
25	Chemical kinetics	Reactions of various order; Arrhenius equation; collision theory; transition state theory; chain reactions - normal and branched; enzyme kinetics
	Photochemistry	Photochemical processes, Quantum yield
26	Qualitative Organic Analysis	Identification of functional groups by chemical tests; elementary UV, IR and ¹ H NMR spectroscopic techniques as tools for structural elucidation.
27	Instrumental Method of Analysis	Basic principles; instrumentations and simple applications of conductometry, potentiometry and UV-vis spectrophotometry; analysis of water, air and soil samples.
	Analytical chemistry	Principles of qualitative and quantitative analysis
28	Adsorption	Gibbs adsorption equation; adsorption isotherm; types of adsorption; surface area of adsorbents; surface films on liquids
29	Natural Products Chemistry	Chemistry of alkaloids, steroids, terpenes, carbohydrates, amino acids, peptides and nucleic acids
30	Spectroscopy	Beer-Lambert law; fundamental concepts of rotational, vibrational, electronic and magnetic resonance spectroscopy
31	Organometallic	Organometallic compounds having ligands with back bonding capabilities such as metal carbonyls, carbenes, nitrosyls and metallocenes; homogenous catalysis.

Revision plan

Revision is evenly all-important after thorough study of surplus syllabus of IIT JAM. There are copious concepts and students need strenuous efforts to harken back to numberless conceptual topics. Your success principally relies upon the strategy of Revision work. How seriously you do your Revision work.

Revision is done in two parts

1). Through studying theory and concepts written in the class notes

2). Application of concepts through solving the question banks (class booklet, daily assignments, Previous year JEE, JAM ,NET and GATE questions)

For getting sure success students are supposed to attend regular classes, but it is accidental that any student has 100% attendance. Usually most sincere and serious students have approx. 95% attendance and there is always unintentional absence due to some unavoidable circumstances. Beside this, most students attend 90% classes and there is always a (much expected) demand from students for respective faculty to take Revision Class in which teacher is required to discuss and solve student's problems (in booklets and other reference material, question bank etc). Teacher will sort out each and every query regarding the topic. He/she will suggest students very importantly how to prepare the class notes, how to do revision (orally or by making notes), solving how many questions are adequate for firm concepts, what should be your approach to complete your syllabus, what should be your study time table, how many hours needed to study daily, how to study effectively with class notes, what to study and what to leave for examination, how much you need to study, how to synchronize the notes, what to do if you stuck in understanding any concept, which type of question should be practiced, what are the recommended book, where you need reference books, at last which topic are relatively more important and should give utmost attentions etc. These are some elementary and common hardship which students can frequently encounter. So to address these aforementioned difficulties Revision program becomes worthwhile and much needed and valuable course for every student.

Revision course at Chem Academy starts in last week of August and continues till 2nd week of November. Its is roughly a 2 and a half month program in which students from any following batches (Y,S,A,R,Z ...) can take participation. These revision classes will take place between Tuesday to Friday from 10:00 am onwards.

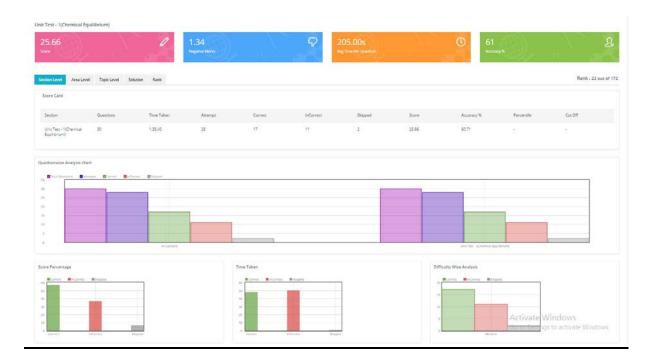
ALL INDIA ONLINE TEST SERIES (AIOTS)

All India Online Test Series at Chem Academy starts from 1st June and resume till 1st week of February. Interested students are required to register validate themselves at Chem Academy for appearing in test series.

Student will get an id & password. These id / password are very important because upon using this only aspirant can become part of online test series.

Student are required to login for test an allotted date and time. Paper will be based on the same questions pattern (MCQ 1 marks, 2 marks, MSQ 2 marks, NAT 1 marks, 2 marks) and a virtual calculator as in IIT JAM exam. You can give this paper on Laptop, PC and Mobile also. Eventually you need to click an submit button for evaluation of answer sheet.

You will immediately get your score card. You get to know your


- 1. No. Of attempted questions.
- 2. Correct answer question
- 3. Incorrect answer question
- 4. Time taken
- 5. Average time per question
- 6. Accuracy
- 7. Negative Marks
- 8. All India Rank (AIR)

If somehow any student is not able to participate in test then he/she need not to worry. After 48 hours this question paper will appear on Chem Academy portal by default and absentees can give the exam and go for evaluation process. In case you have to quite amid examination session, you can simply forsake the paper (need not to click on submit button) and next time (after 48 hours) you can continue from the same place by pressing RESUME option. Once you submit the paper, you will not get another opportunity to give that exam, but of course you can visit the question papers and their correct responses, simply means every question paper can be dealt only once.

Academy will provide pdf solutions and detailed video solution of these question papers.

No.	of	Duration	Doubt Session	Fee	Additional Facilities
Test				Structure	
65		6 month	Student care program	4,500/-	Pdf solutions + Video solutions
			+ emails		of test series

FEE STRUCTURE OF AIOTS

MINOR TEST SERIES & REVISION CLASS SCHEDULE

No of tests	Batch	Торіс	Test Date (online)
1	Classroom Prog, DLP course, Online live course, Online Test series	Electrochemistry, Phase Equilibrium, Adsorption	04 th September (5:00 PM – 8:00 PM)
2	Classroom Prog, DLP course, Online live course, Online Test series	Metallurgy, Periodic Properties and Organometallics	09 th September (5:00 PM – 8:00 PM)
3	Classroom Prog, DLP course, Online live course, Online Test series	General Organic Chemistry, Carbocation and Free radical	14 th September (5:00 PM – 8:00 PM)
4	Classroom Prog, DLP course, Online live course, Online Test series	Solid State, Chemical Equilibrium and Ionic Equilibrium	19 th September (5:00 PM – 8:00 PM)
5	Classroom Prog, DLP course, Online live course, Online Test series	d-Block, Coordination Chemistry, Chemical Bonding	24 th September (5:00 PM – 8:00 PM)
6	Classroom Prog, DLP course, Online live course, Online Test series	Stereochemistry and Reaction Mechanism	29 th September (5:00 PM – 8:00 PM)
7	Classroom Prog, DLP course, Online live course, Online Test series	Main Group Elements, s-Block, Dipole Moment, Weak Forces and Titration, Conductance	04 th October (5:00 PM – 8:00 PM)
8	Classroom Prog, DLP course, Online live course, Online Test series	Chemical Kinetics, Photochemistry and Nuclear Chemistry	09 th October (5:00 PM – 8:00 PM)
9	Classroom Prog, DLP course, Online live course, Online Test series	Solutions, Gaseous State, Atomic Structure and Quantum Chemistry	14 th October (5:00 PM – 8:00 PM)
10	Classroom Prog, DLP course, Online live course, Online Test series	Enolate Chemistry, Name Reaction and Reagents	19 th October (5:00 PM – 8:00 PM)
11	Classroom Prog, DLP course, Online live course, Online Test series	Redox Reaction, Thermochemistry, NMR spectroscopy, IR Spectroscopy, UV spectroscopy	24 th October (5:00 PM – 8:00 PM)
12	Classroom Prog, DLP course, Online live course, Online Test series	Bioinorganic, Physical Spectra and Thermodynamics	29 th October (5:00 PM – 8:00 PM)

13	Classroom Prog, DLP course, Online live course, Online Test series	Carbene, Nitrene, Benzyne, Biomolecules and Heterocyclic Compound	04 th November (5:00 PM – 8:00 PM)
----	---	---	--

MAJOR TESTS SCHEDULE

Major Test 1	Time: 2:00 PM to 5:00 PM Date: 11 th Dec. 2019
Physical Chemistry	Atomic Structure, Quantum Chemistry, Physical Spectroscopy, Basic Mathematical concept
Inorganic Chemistry	Main Group Elements
Organic Chemistry	GOC – Electronic Effect + Aromaticity + Steric Effects(SIR/SIP/NBEPR)Reaction Intermediates (Carbocation and Free Radical)
Major Test 2	Time: 2:00 PM to 5:00 PM Date: 17 th Dec. 2019
Physical Chemistry	Theory of gases, Thermodynamics, Thermochemistry
Inorganic Chemistry	d-Block, Coordination Chemistry, Organometallics
Organic Chemistry	Stereochemistry, Reaction Mechanism (SN/E)
Major Test 3	Time: 2:00 PM to 5:00 PM Date: 21 st Dec. 2019
Physical Chemistry	Chemical Equilibria, Ionic Equilibria, Phase Equilibria, Colligative Properties
Inorganic Chemistry	Periodic Properties, Chemical Bonding
Organic Chemistry	Intermediates (Carbene + Nitrene + Benzyne + Carbanion) Reagents, Name Reaction
Major Test 4	Time: 2:00 PM to 5:00 PM Date: 25 th Dec. 2019
Physical Chemistry	Electrochemistry, Conductance, Solid State, Redox Reaction
Inorganic Chemistry	Bioinorganic chemistry, Instrumental Method of analysis, Titrations
Organic Chemistry	Pericyclic Reactions, Structural Problems using Chemical Reactions, Organic Spectroscopy
Major Test 5	Time: 2:00 PM to 5:00 PM Date: 29 th Dec. 2019
Physical Chemistry	Chemical Kinetics, Adsorption, Photochemistry, Radioactivity
I CI ···	

Physical Chemistry	Chemical Kinetics, Adsorption, Photochemistry, Radioactivity
Inorganic Chemistry	Analytical Chemistry, Qualitative Analysis
Organic Chemistry	Natural Product Chemistry, Heterocyclic Chemistry

PART TESTS SCHEDULE

Part Test 1	Time: 2:00 PM to 5:00 PM	Date: 02 nd Jan. 2019	
Physical Chemistry	Basic Mathematical Concepts, Atomic Structure, Quantum Chemistry,		
	Theory of gases, Solid State, Colligative Property	ties	
Inorganic	Periodic Properties, Chemical Bonding, Main G	roup Elements	
Chemistry			
Organic Chemistry	GOC, Stereochemistry, Reaction Intermediates	s (Carbocation & Free	
	Radicals), Reaction Mechanism		
Part Test 2	Time: 2:00 PM to 5:00 PM	Date: 06 th Jan. 2020	
Physical Chemistry	Thermodynamics, Thermochemistry, Eq Equilibrium, Ionic Equilibrium, Phase Equilibriu	uilibrium, Chemical um	
Inorganic Chemistry	d-Block, Coordination Chemistry, Organometal	lics, Bioinorganic	
Organic Chemistry	Intermediates (Carbanion + Carbene + Nitrene +	- Benzyne)	
	Reagents, Name Reaction	tb	
Part Test 3	Time: 2:00 PM to 5:00 PM	Date: 10 th Jan 2020	
Physical Chemistry	Electrochemistry, Chemical Kinetics, Adsorption	tion, Physical Spectra,	
	Redox Reaction		
Inorganic	Instrumental Method of Analysis, Analytical	l Chemistry, Titration,	
Chemistry	Radioactivity		
Organic Chemistry	Organic Spectroscopy, Natural Products Cl	hemistry, Heterocyclic	
	Compounds, Pericyclic Reactions		

FULL TESTS SCHEDULE

Full Test 1	Time: 2:00 PM to 5:00 PM	Date: 15 th Jan. 2020
Physical Chemistry	Complete Syllabus for JAM	
Inorganic Chemistry	Complete Syllabus for JAM	
Organic Chemistry	Complete Syllabus for JAM	
Full Test 2	Time: 2:00 PM to 5:00 PM	Date: 20 th Jan. 2020
Physical Chemistry	Complete Syllabus for JAM	
Inorganic Chemistry	Complete Syllabus for JAM	
Organic Chemistry	Complete Syllabus for JAM	
Full Test 3	Time: 2:00 PM to 5:00 PM	Date: 25 th Jan. 2020
Physical Chemistry	Complete Syllabus for JAM	
Inorganic Chemistry	Complete Syllabus for JAM	
Organic Chemistry	Complete Syllabus for JAM	
Full Test 4 Times	: 2:00 PM to 5:00 PM Date:	30 th Jan. 2020
Physical Chemistry	Complete Syllabus for JAM	
Inorgania	Complete Sullabus for IAM	

E11 T4 5	Thurson 2.00 DM 4- 5.00 DM D-4 04 th E-1 2020
Organic Chemistry	Complete Syllabus for JAM
Chemistry	
Inorganic	Complete Syllabus for JAM
Physical Chemistry	Complete Syllabus for JAM

Full Test 5 Time: 2:00 PM to 5:00 PM Date: 04th Feb. 2020

Physical Chemistry	Complete Syllabus for JAM
Inorganic Chemistry	Complete Syllabus for JAM
Organic Chemistry	Complete Syllabus for JAM

+